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Abstract

Forcing a land surface model (LSM) offline with realistic global fields
of precipitation, radiation, and near-surface meteorology produces realistic
fields (within the context of the LSM) of soil moisture, temperature, and
other land surface states. These fields can be used as initial conditions for
precipitation and temperature forecasts with an atmospheric general circu-
lation model (AGCM). We test their usefulness in this regard by performing
retrospective one-month forecasts (for May through September, 1979-1993)
with the NASA Global Modeling and Assimilation Office (GMAO) seasonal
prediction system. The 75 separate forecasts provide an adequate statisti-
cal basis for quantifying improvements in forecast skill associated with land
initialization.

Evaluation of skill is focused on the Great Plains of North America, a
region with both a reliable land initialization and an ability of soil moisture
conditions to overwhelm atmospheric chaos in the evolution of the meteo-
rological fields. The land initialization does cause a small but statistically
significant improvement in precipitation and air temperature forecasts in this
region. For precipitation, the increases in forecast skill appear strongest in
May through July, whereas for air temperature, they are largest in August
and September. The joint initialization of land and atmospheric variables is
considered in a supplemental series of ensemble montbly forecasts. Poten-
tial predictability from atmospheric initialization dominates over that from
land initialization during the first two weeks of the forecast, whereas dur-
ing the final two weeks, the relative contributions from the two sources are
of the same order. Both land and atmospheric initialization contribute in-
dependently to the actual skill of the monthly temperature forecast, with
the greatest skill derived from the initialization of both. Land initialization
appears to contribute the most to monthly precipitation forecast skill.



1 Introduction

Numerical weather forecasts rely on atmospheric initialization — the accurate
specification of atmospheric pressures, temperatures, winds, and humidities
at the beginning of the forecast. Such initialization may contribute to fore-
cast skill at leads of up to ten days. Forecasts at longer leads, however,
require a different strategy. They must take advantage of slower modes of
the climate system, modes with states that are not so quickly dissipated by
chaos. To this end, operational centers now supply seasonal atmospheric
forecasts based largely on forecasts of ocean behavior. The idea is simple —
if sea surface temperatures (SSTs) can be predicted months in advance, and
if the atmosphere responds in predictable ways to the predicted SSTs, then
aspects of the atmosphere’s behavior can be predicted months in advance.
Soil moisture, another slow variable of the climate system, is beginning to
garner attention in the forecast community (e.g., Dirmeyer et al., 2003). The
timescales of soil moisture memory are typically 1 or 2 months (Vinnikov
and Yeserkepova, 1991; Entin et al., 2000), significantly less than those of
the ocean. Nevertheless, soil moisture has a special importance. Some at-
mospheric general circulation model (AGCM) studies (Kumar and Hoerling,
1995; Trenberth et al. 1998; Shukla, 1998, Koster et al., 2000) note a strong
tropical-extratropical contrast in the ocean’s impact on climate. This impact
in midlatitudes, where much of the world’s population lives, may be signif-

icantly modulated by land surface processes, particularly in summer. Soil



moisture may play a key role in these areas (Koster et al. 2000).

AGCMs are indeed useful tools for examining the role of soil moisture in
the climate system. (See Koster and Suarez (2003) for a literature review of a
number of relevant studies.) Of particular relevance to forecasting are those
studies that evaluate the improvement of forecast skill associated with the
correct initialization of soil moisture. Beljaars et al. (1996), Fennessy and
Shukla (1999), Douville and Chauvin (2000), and Viterbo and Betts (1999)
used reasonably realistic soil moistures (e.g., from reanalyses or offline pre-
scribed forcing analyses) to initialize AGCM simulations, and all found some
cause for encouragement — suggestions that the initialization does improve
the simulation of precipitation and/or temperature.

For the forecast experiments of Koster and Suarez (2003), a preliminary
simulation was performed in which AGCM-generated precipitation rates were
replaced with observed rates prior to applying the precipitation to the land
surface. The land surface in this simulation thus evolved soil moistures that
reflected observed antecedent precipitation. These soil moistures were then
used as initial conditions for separate forecast simulations. The study’s main
contribution was an illustration of how three factors — the size of typical soil
moisture anomalies, the sensitivity of evaporation to soil moisture, and the
sensitivity of precipitation to evaporation — work together to determine the
impact of soil moisture initialization on the forecast. In addition, evaluations

of forecasted precipitation and temperature against observations suggested



some improvement associated with land initialization. Koster and Suarez
(2003), however, argued that the improvement was small enough to require
a much larger number of independent forecast periods for its proper quan-
tification — the five years analyzed in the study were insufficient for useful
statistics. A similar limitation applies to the other, aforementioned soil mois-
ture initialization studies.

The present study can be considered a substantial broadening of the
Koster and Suarez (2003) study. Perhaps most important, we examine here
the impact of soil moisture initialization on 1-month forecasts for each of
5 northern hemisphere warm-season months in each of 15 years, spanning
1979-1993. Thus, a total of 75 independent forecasts are evaluated against
observations, enough to generate — for the first time — reasonable statistics
for the small inherent signal. This study also features several improvements
in initialization technique and analysis. For example, we use a more complete
set, of antecedent forcing data to initialize soil moisture; rather than focusing
on observed antecedent precipitation alone, observed antecedent radiation
and near-surface air properties from reanalysis are also employed (section
2.2). Land initialization effects are examined side-by-side with atmospheric
initialization effects, to demonstrate the relative contribution of land initial-
ization to total skill (section 3.4). Impacts of temporal scale (first half versus
second half of month; see section 3.4) are considered explictly. Furthermore,

the skill levels produced are examined relative to “idealized predictability”



— the maximum forecast skill possible in the system — with a more robust
diagnostic (section 3.1) than that used by Koster and Suarez (2003).

As a result of these and other improvements, we establish in this study
much firmer conclusions regarding the impact of realistic soil moisture ini-

tialization on forecast skill.

2 Design of Experiment

2.1 Modeling System

The forecast experiments make use of the seasonal prediction system of the
NASA Global Modeling and Assimilation Office (GMAO), which is the same
as the NSIPP system referred to in our earlier studies (e.g., Koster and
Suarez, 2003; Koster et al.; 2000). The atmospheric general circulation model
(AGCM) is a state-of-the art finite difference model run at a resolution of
2° latitude x 2.5° longitude. It uses the relaxed Arakawa-Schubert scheme
(Moorthi and Suarez, 1992) for convection, sophisticated codes for shortwave
and longwave radiation (Chou and Suarez, 1994), and fourth-order advection
of vorticity and all scalars in the modeled dynamics. The land surface model
(LSM) is the Mosaic LSM of Koster and Suarez (1996), a soil-vegetation-
atmosphere transfer (SVAT) model that uses tiling to account for subgrid
vegetation distributions. The behavior of the coupled land-atmosphere sys-
tem relative to observations is well documented (Bacmeister et al., 2000;

Koster et al., 2000); the coupled model, while not perfect, successfully re-



produces the broad features of precipitation means and variances across the

globe.

2.2 Initialization Procedure

In situ soil moisture observations do exist (Robock et al., 2000), but they have
a limited spatial distribution and are completely absent in most parts of the
world. Satellite-derived values (e.g. Owe et al., 2001) are available across the
globe for sparsely vegetated areas but are limited temporally and represent
moisture in only the top few millimeters of soil. Thus, for global distributions
of soil moisture in the root zone and below, an alternative, indirect approach
is required. One promising approach is based on the utilization of antecedent
meteorological forcing. Rainfall, for example, is well measured globally, at
least relative to soil moisture. If rainfall for the month prior to the forecast
start date is known to be anomalously high, the local soil moisture on the
forecast start date should be higher than average, as well.

A complete and accurate global dataset of observed meteorological forc-
ing used in conjunction with global soil and vegetation properties should,
in principle, contain all of the information needed to determine the global
field of soil moisture anomalies on any given date, if the data are processed
with a good land surface model. This is the basis of the approach used in
this paper. Although a perfect observational dataset does not exist, a recent
dataset developed by Berg et al. (2003, 2004) is a good approximation. This

global dataset provides meteorological forcing every 6 hours over the period
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1979-1993. Values for wind speed, surface pressure, and near-surface air tem-
perature and humidity are extracted from the ERA-15 reanalysis (Gibson et
al., 1997), as are the submonthly breakdowns of the precipitation and radi-
ation. Surface pressure and air temperature values are elevation-corrected.
Monthly precipitation amounts agree with values provided by the Global
Precipitation Climatology Project (GPCP version 2; see Adler et al., 2003),
and monthly incoming solar and longwave radiation amounts match those
estimated by the SRB project (Gupta et al., 1999). (The radiation data
were available between July 1983 and June 1991; outside this period, the
reanalysis-derived radiation values were scaled to match SRB climatology.)
Monthly-averaged air temperatures were forced to agree with a merged obser-
vational dataset constructed from those of New et al. (2000) and Willmott
and Matsuura (2001). Vapor pressures were scaled to those of New et al.
(2000).

These data are used to force a 15-year offline simulation of the Mosaic
LSM using the Global Land Data Assimilation System (GLDAS). GLDAS
was developed through a collaboration of scientists at the NASA /Goddard
Space Flight Center and NOAA /National Centers for Environmental Predic-
tion; its goal is to produce global, reliable fields of land surface states and
fluxes by parameterizing, forcing, and constraining multiple, sophisticated
LSMs with data from advanced observing systems (Rodell et al., 2004).

For this particular offline simulation, GLDAS vegetation, soil, and eleva-



tion parameters were set to match those of the seasonal prediction model.
GLDAS/Mosaic was “spun up” by looping over the 1979 forcing ten times
prior to driving the LSM for the full fifteen year period. Output from the
beginning of each warm season month provide the initial conditions used in
this study. Recent analyses (Reichle et al., 2004; Berg et al., 2004) shows
that a subset of these initial conditions, the near surface soil moisture fields,
are reasonably consistent with SMMR satellite retrievals and in situ observa-
tions from the Global Soil Moisture Data Bank (Robock et al., 2000), given
the limitations of each dataset.

This offline forcing approach has an important advantage. Koster and
Milly (1997) illustrate the model-dependent nature of simulated soil moisture
and the danger of blindly inserting soil moisture from one LSM — or even from
observations — into another LSM. Because the GLDAS forcing is applied
during the initialization procedure to the Mosaic LSM, and because that
LSM is also used in the forecast system, this danger is largely avoided.

Despite this guaranteed consistency, however, some adjustment of the
initialized fields is still necessary due to climate biases in the forecast system
relative to observations. As explained in Koster and Suarez (2003), use of
unmodified fields could lead to suboptimal forecasts — the unmodified fields
would lead to a transitional climate “drift” during the forecast period, a drift
that could muddle the interpretation of the forecast. To avoid this drift, at

least to first order, standard normal deviates are used. Let X, be the



average value of a state variable X (say, soil moisture in the root zone) on a
given forecast start date, as determined from the GLDAS system. Because
GLDAS produces data for 15 years, this mean will be based on 15 values.
Similarly, let oo be the standard deviation of X on that date, and let X 04
and o,0q be the corresponding AGCM statistics. If X, is the value of the
state variable for year n as provided by the GLDAS system, then the value
Xmoa used to initialize the coupled land-atmosphere system is the one that
satisfies:

Xinod = Ximod _ Xotw = Xoww "

Omod Oobs

Using (1) ensures, for example, that a relatively wet state from the GLDAS
system translates to a correspondingly wet state in the coupled model. If the
coupled system models the statistics of climate perfectly at a given grid cell,
then the GLDAS value is effectively used there without modification.

We are implicitly assuming here that the model-generated fields are ac-
curate, to first order. In the future, we expect to increase their accuracy
through data assimilation techniques — through the direct combination of
satellite-derived soil moisture products, limited as they are, with the model

products (e.g., Walker and Houser, 2001, Reichle and Koster, 2003).

2.3 Ensembles Performed

A total of 75 1-month ensemble forecasts were performed: for each year

during 1979-1993, we initialized the land surface on the first day of May,



June, July, August, and September and integrated the model for one month
following each initialization. Each of the 75 ensemble forecasts, which are
examined with zero lead, contained nine independent members.

All members of a given ensemble used the same land surface initial con-
ditions, namely, the land states produced by GLDAS, scaled with (1). The
members of the GLDAS ensemble differed only in their initial atmospheric
conditions, which were taken from nine parallel “AMIP-style” simulations,
i.e., simulations in which the sea surface temperatures (SSTs) are prescribed
to observed values. Although the nine sets of initial atmospheric conditions in
an ensemble are consistent with the SSTs on the forecast start date, they do
not necessarily resemble each other or the observed atmospheric conditions
on that date; in essence, each set of atmospheric initial conditions represents
one realization of what nature could have produced on that start date given
chaotic atmospheric dynamics. This is a critical aspect of our simulations. In
our main set of forecasts, we do not make use of the source of skill used by nu-
merical weather prediction (NWP) systems; any skill found reflects only land
initialization and SST specification. Supplemental simulations, described in
section 3.4, examine how the accurate initialization of both the atmosphere
and the land affect forecast skill.

To isolate the impact of the land initial conditions from that of SST
specification, the above forecasts are compared to corresponding ensemble

“forecasts” that do not make use of a specific land surface initialization.
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These otherwise identical forecasts are simply the appropriate subsets of the
nine parallel AMIP-style simulations. By design, the initial atmospheric
conditions are equivalent to those used in the first set of ensembles. The
initial land surface states for a given forecast in the second set of ensembles
are fully consistent with the initial atmospheric states for that forecast, since
they are derived from the same long-term AMIP-style simulation. The land
initial conditions, however, naturally vary between the forecasts, since the
land states in parallel AMIP-style simulations are different. In effect, the
land initial conditions for this second set of ensemble forecasts are chosen
randomly from the broad distribution of states that are consistent with the
concurrent SSTs.

We hereafter refer to the first set of ensembles — the ones using accurate
land initialization — as the GLDAS forecasts. The second “control” set of
ensembles is referred to as the AMIP forecasts. Note that the use of the term
“forecasts” is not precisely correct, since we are prescribing realistic SST's
throughout the 1-month forecast period. In both cases, we are assuming
that SSTs can be perfectly predicted for one month. A comparison of the
GLDAS and AMIP ensembles will nevertheless isolate the impact of the land

initialization on forecast skill.

2.4 Validation Data

The temperature data used to evaluate the 1-month temperature forecasts

are extracted from the dataset of Berg et al. (2003) for the month in question.
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The data source for the validation is thus the same as the data source used
in the initialization. Of course, the initialization and validation data come
from two non-overlapping segments of this single data source.

For precipitation, the data used across much of the globe is similarly
extracted from the Berg et al. (2003) dataset. Over the United States, how-
ever, we replace these data with the dataset of Higgins et al. (2000), which
is based on a much more complete raingauge database than was utilized by
GPCP. As will be seen below, validation in this area will be key to addressing

land initialization impacts.

3 Results

3.1 Idealized Analysis: Maximum Skill Possible With
The Modeling System

Before proceeding with a full, global evaluation of forecast skill, we pause
to consider the maximum skill possible in the modeling system — the upper
bound to what we can hope to achieve. Perfect predictability with a seasonal
forecast system is precluded by atmospheric chaos. The vagaries of chaos
allow nature to take different evolutionary paths from initial atmospheric
conditions that differ only slightly from each other, within measurement er-
ror. In effect, nature provides only one realization of seasonal weather from
a potentially broad probability density function (PDF). The hope in sea-

sonal forecasting is that this PDF can be reproduced accurately and can
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be narrowed significantly with the specification of slowly evolving boundary
conditions in the ocean and land.

To quantify the maximum possible skill in the system, skill that is not lim-
ited by errors in initial conditions, boundary conditions, or validation data,
we perform the following idealized analysis. First, we assume that the first
member of the GLDAS forecast ensemble represents “nature” and that the
remaining eight members of the ensemble represent the actual model forecast.
Then, at each grid cell, we perform a scatter analysis, as illustrated in Figure
1. Each point in the figure represents one of the 15 Mays, Junes, Julys, Au-
gusts, or Septembers analyzed in our experiments. The x-coordinate is the
“forecasted” precipitation anomaly for the month at a specific grid cell (in the
central United States: 97.5°W, 40°N), computed by averaging the precipita-
tion generated by the noted 8 ensemble members and then subtracting from
this average the multi-year model mean for that month. The y-coordinate is
the corresponding “observed” anomaly, i.e., the anomaly from the ensemble
member representing nature. The square of the correlation coefficient (r?) is
computed through linear regression.

This 1? value quantifies the ability of the model to predict an assumed
“nature”, given that the model and this nature use exactly the same internal
physics, the same surface boundary conditions, and the same initial condi-
tions for land. Clearly, if this idealized prediction skill were perfect, the 75

points would lie along the 1:1 line, and r? would be exactly 1. If, on the other
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hand, prediction skill was completely absent, the points would be scattered
randomly, and r? would be close to zero. In all of our analyses, if the line
fitted through the points has negative slope (indicating “negative skill”), r?
is automatically set to 0. This zeroing is employed to reduce noise in our
later evaluations of model forecasts against observations; for the idealized
analysis here, the zeroing has almost no impact. In the plotted example,
r’=0.39, which we interpret as an idealized skill level of 39%. (The equiv-
alent plot constructed from the AMIP ensemble shows much more scatter,
with a negligible r?.)

Once the global array of r? values is established through this procedure,
the second ensemble member is chosen to represent “nature”, and the process
is repeated. The process is performed a total of nine times, once for each
ensemble member, and the resulting nine r? arrays are averaged.

The top panel of Figure 2 shows this average idealized r? value for precip-
itation, as generated from the GLDAS ensemble. These values indicate the
maximum potential predictability associated with land initialization com-
bined with SST specification. The middle panel of the figure shows the

2

corresponding r* values for the AMIP ensemble, which indicate the maxi-

mum potential predictability associated with SST specification alone. The

2 values are shown in the bottom panel. These

differences between these r
differences reflect the gain in potential predictability associated with land

initialization.

14



Clearly, in this modeling system, land initialization can contribute to pre-
dictability over only a few key areas: the Central United States, equatorial
South America, equatorial Africa, parts of central Asia, and the land skirt-
ing the Bay of Bengal. These regions agree, in essence, with those identified
by Koster and Suarez (2003) with an alternative, and less robust, statistic.
Outside these regions, the chaotic dynamics of the atmosphere overwhelm
any control imposed by anomalies at the land surface. Outside these regions,
a positive impact of land initialization on precipitation forecast skill cannot
be expected. (We caution here that the indicated regions of maximum pre-
dictability may be model dependent; indeed, a strong inter-model disparity
exists in the calculation of land impacts on atmospheric processes (Koster et
al., 2002).)

Figure 3 provides the same information for the idealized air temperature
forecasts. The inherent predictability of temperature associated with land
initialization greatly exceeds that of precipitation throughout most of the
globe, in terms of both magnitude and the areal extent of impact. This is
not a surprise if one assumes a stronger physical connection between soil
moisture and air temperature (through the former’s impact on evaporative
cooling) than between soil moisture and precipitation. The areas of impact
include some southern hemisphere regions. In some areas, however, such as
northern Asia and much of either coast of North America, chaotic atmo-

spheric dynamics still prevent any prediction at all.
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3.2 Assessing Skill: Main Area of Focus

Two strong constraints limit our analysis of the impacts of soil moisture
initialization on forecast skill: (1) soil moisture initialization must have a
statistically significant impact on the forecast, and (2) the applied initial
soil moisture must be of acceptable accuracy. The first requirement was ad-
dressed in section 3.1. In our assessments of skill in this modeling system, we
need not look outside the shaded areas in the bottom panels of Figures 2 and
3. Furthermore, we note again that an idealized r? increase associated with
land initialization in either figure is indeed an upper bound for the actual r?
increase for the forecasts — an upper bound that will be difficult to attain,
given unavoidable errors in model initialization and parameterized physics.
The actual r? increase must be accomodated between this upper bound and
a value of, say, 0.035, which is significantly different from zero at the 90%
confidence level. In this paper, to increase the potential for discernable fore-
cast skill, we focus our analyses on areas for which the idealized r? increase
in the bottom panel of Figure 2 or 3 exceeds 0.1. These areas are outlined
with black lines in the panels. (Alternative choices for the critical value do
not significantly affect the results.)

The second constraint is now addressed. While definitive estimates of soil
moisture accuracy are impossible given the paucity of in situ data, an anal-
ysis of the factors that determine soil moisture does provide guidance. The

initialization system relies on the specification of realistic soil type, vegeta-
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tion type, and various forcing data: radiation, precipitation, and near-surface
meteorological quantities such as specific humidity and temperature. Errors
in the specification of any of these quantities could lead to errors in land
surface initialization.

For this study we focus on the precipitation forcing, making the assump-
tion that precipitation is the key driver of soil moisture anomalies. Clearly,
if the precipitation forcing is poor, soil moisture values cannot be trusted.
Oki et al. (1999) demonstrated that a minimum of about 30 precipitation
gauges per one million square kilometers, or about 2 gauges per 2.5° x 2.5°
GPCP grid cell, are required for accurate streamflow simulation. Because
this density would severely limit the areas over which we could evaluate fore-
cast skill, we employ an arbitrarily lower (but still nonzero) critical level for
our analysis. We assume here that a raingauge density of 0.5 gauges per 2.5°
x 2.5° GPCP grid cell is required for a reasonably accurate initialization of
soil moisture. (The exact value chosen turns out to have little impact on the
results.)

Figure 4 shows the density of precipitation gauges used by GPCP to gen-
erate monthly precipitation totals. (Again, monthly GPCP totals underlie
the precipitation forcing used to drive the land model in the initialization
phase.) In fact, the plot shows the minimum density over the 15 years of
analysis; this was determined by first finding the average density in each

GPCP cell for each year (all 12 months) and then identifying, for each cell,
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the year with the lowest value. Tremendous changes in the yearly coverage of
gauges utilized by GPCP — associated with a 1986 switch in gauge network
— necessitate the consideration here of minimum density rather than 15-year
average density. As seen from the figure, many parts of the world have un-
acceptable densities. Furthermore, as seen from a comparison of Figure 4
with the bottom panel of Figure 2, only the central United States has both
a significant soil moisture impact on precipitation and an accurate soil mois-
ture initialization, as inferred from gauge density. We will therefore limit
to this one region our assessment of soil moisture initialization’s impact on
precipitation forecast skill. For monthly temperature forecasts, a comparison
of Figures 4 and 3 shows that several isolated regions across the globe satify
our criteria for forecast assessment.

Note that in applying the rain gauge density criterion, we are implicitly
assuming that most soil moisture feedback effects are local. The idealized pre-
dictability criterion, on the other hand, carries no such assumption; whether
soil moisture effects are local or remote, we cannot expect, in this modeling
system, to see an improvement in skill outside the areas outlined in Figures
2 and 3. The assumption of purely local impacts will be relaxed in future,
more detailed analyses. We note now, however, that for precipitation pre-
diction, the local impacts assumption essentially eliminates our analyses in
equatorial South America and Africa. This is not a major problem, since

the rain gauge densities in the surrounding areas — in the potential remote
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controlling areas for these two regions — also tend to be much too small.
For temperature prediction, the local impacts assumption is more defensible,
since soil moisture has a first order impact on local temperature through its

effect on evaporative cooling.

3.3 Skill Assessment: One-month Forecasts

In our assessment of forecast skill, we construct scatter plots (not shown)
similar to that in Figure 1, with the x-axis now representing the simulated
precipitation anomaly averaged over all 9 ensemble members (i.e., the full
forecast), and the y-axis representing the observed anomaly, relative to the
observed mean. We take the resulting r? values, one value computed at each
grid cell using 75 forecast/observed pairs, as our measure of forecast skill.
Note that the experimental design makes the use of certain other skill mea-
sures, such as the root-mean-square error (rmse), problematic. Because the
experimental forecast is an average of 9 ensemble members, the year-to-year
variance of the forecast is necessarily smaller than that of the observations,
which represents a single “realization” of what nature might produce. This
unavoidable variance reduction would inappropriately magnify an rmse di-
agnostic but does not affect the r? diagnostic.

The top left panel of Figure 5 shows, for the GLDAS forecasts, the r?
values in the region of interest in North America — in the set of grid cells
having both adequate gauge density (from Figure 4; see section 3.2) and some

clear indication of a robust impact of land initialization on precipitation (an
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r? difference value exceeding 0.10 from Figure 2). The remainder of North
America is whited out, to focus the analysis. The top right panel shows the
equivalent field for the AMIP forecasts. The GLDAS forecasts do appear to
reproduce observations slightly better, as indicated by the difference map in
the lower left panel. Note that any quantity in the difference map indexed
with a color is significant at the 90% confidence level. Differences of 0.05 and
0.08 are significant at the 95%, and 99% levels, respectively.

The maximum increase in r? in the difference map is 0.13. While signifi-
cant, this increase falls far below the idealized increase from Figure 2, which
for comparison is shown in the lower right panel of Figure 5. There are
many obvious possible reasons for this: the modeling system is presumably
deficient; the initial conditions are presumably imperfect, despite the appli-
cation of a gauge density criterion; and the validation data are themselves
imperfect. Nevertheless, the improvement in the designated area does serve
as evidence of a positive impact of soil moisture initialization on precipitation
forecast skill.

Enclosed by dotted lines in the two lower plots of Figure 5 are those
grid cells that satisfy the raingauge criterion and for which the idealized r?
difference value exceeds 0.30 rather than 0.10. Thus, in this smaller area
(“Area 27), idealized predictability in the model is much stronger. Notice
that the location of the improvement in skill lies largely within Area 2 —

precisely where the model is apt to provide the most skill. This is presumably
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not a coincidence.

Figure 6 shows the equivalent four plots for air temperature. The success
of the forecasts with land initialization is much stronger, covering much more
of the region of focus (which is, to begin with, larger than that for precipita-
tion). The maximum r? increase is 0.15, which is significantly different from
zero at the 99.9% confidence level.

Again, a comparison of Figures 3 and 4 suggests that for temperature,
evaluations can extend beyond the Great Plains. Figure 7 shows a global ver-
sion of the r? increases associated with land initialization. A few spots (e.g.,
Nordeste, eastern Equatorial Africa) show a reduction in r?, presumably a
reflection of sampling error. Far more of the testable regions show increases
in r?, further supporting the idea that land initialization contributes to tem-
perature forecast skill. Unfortunately, a similar extension of the precipitation
analysis to the globe is not as telling. Only a handful of grid cells outside of
North America satisfy the two evaluation criteria, and r? differences in these
grid cells cannot be distinguished from random sampling error. Furthermore,
relaxing either the raingauge density criterion or the potential predictability
criterion, in order to allow additional areas for examination of precipitation
forecast skill, does not yield useful results; as might be expected, the skill
levels in the new, less promising areas are indistinguishable from noise.

Again, all of the skill increases examined in this study are limited by

model and data deficiencies. Throughout this analysis, we are, in a sense,
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determining minimum skill increases. As discussed further in section 4, skill
will presumably increase as the models and data get better.

Figure 8 provides a rough indication of how forecast skill varies with
month. The r? values calculated from a single month’s worth of data (15
pairs of values at each grid cell) are relatively unreliable, statistically. If we
average these unreliable r? values, however, across all grid cells within our
areas of focus, we can expect some filtering of the noise and the emergence
of an underlying signal. Two areas — Area 1 and Area 2 from Figures 5 and
6 — are considered here for both precipitation and temperature. The four
plots in Figure 8 show the areal averages of r? as a function of month. For
both precipitation and temperature forecasts, the average r? values in most
of the months are indeed generally higher when the soil moisture is properly
initialized, especially for Area 2, for which predictive skill should indeed be
higher. Improvement in precipitation forecast skill is evidently highest in
May through July. For temperature forecasts, land initialization seems to
provide the most skill during August and September. The reasons for these
monthly differences are not currently known. Monthly variations in idealized

skill (not shown) are not so large.

3.4 Impact of Atmospheric Initialization

Up to now, atmospheric initialization has not been a focus of this paper. The
individual ensemble members in the experiments above were not initialized

with reanalysis fields but rather with very different atmospheric conditions,
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taken from the broad range of possible states that are consistent with the
imposed SSTs. To examine the relative importance of land and atmospheric
initialization, we performed two sets of 1-month 9-member ensemble fore-
casts for each June during 1979-1993. In the first set (hereafter referred
to as GLDAS-Atm), the member simulations were initialized with both the
GLDAS land surface states and with atmospheric anomalies from the NCEP
reanalysis (provided by the NOAA-CIRES Climate Diagnostics Center, Boul-
der, Colorado, from their Web site at http://www.cdc.noaa.gov). In effect,
the atmospheric anomalies from the NCEP reanalysis (relative to the reanal-
ysis’s climatology) were applied to the AGCM’s own climatological mean
state, and perturbations were imposed in all atmospheric variables to allow
the different ensemble members to evolve independently. (These perturba-
tions were, of course, small enough to ensure that each set of imposed anoma-
lies looks very much like the unperturbed set of anomalies.) In the second
series of ensembles (hereafter referred to as Atm), the atmosphere in each
ensemble member was similarly initialized with reanalysis data, but the land
was not initialized with GLDAS states — the same set of land states employed
in the AMIP simulations, which represents the full distribution of land states
consistent with the imposed SSTs, was used instead.

Because only June simulations were performed, all of the computed statis-
tics for the GLDAS-Atm and Atm simulations are based on 15 values rather

than 75 values. Therefore, these statistics, like those for the monthly r? val-
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ues in Figure 8, are somewhat unreliable. Nevertheless, they can still provide
a rough indication of relative skill, especially when averaged over our area of
focus (Area 1 for each variable in Figures 5 and 6).

We begin with an idealized analysis, equivalent to that performed in
section 3.1. The histograms in Figure 9 show, for both the first and second
halves of June, the degree to which the model can predict itself (i.e., the
degree to which atmospheric chaos alone would foil the forecast) under the
different initialization scenarios. For clarity, the bars are identified according
to the aspects of the system that can provide skill. For the AMIP ensemble,
this can only be the specification of the SSTs. For the GLDAS ensemble,
only the SSTs and the land initialization contribute to skill, and for the
Atm ensemble, only the SSTs and the atmospheric initialization do. All
three elements contribute to skill in the GLDAS-Atm ensemble. Each bar
represents an average of the r? values over Area 1.

For both precipitation and temperature, the contribution of atmospheric
initialization to idealized predictability is quite large during the first half
of the month and is much smaller during the second half. This is consistent
with current understanding of operational numerical weather prediction. The
contribution of land initialization to idealized predictability, on the other
hand, is roughly the same in both halves of the month. During the second
half of June, the contribution of land initialization is about the same as

that of atmospheric initialization. Notice that the maximum predictability
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is obtained when both the land and the atmosphere are initialized. The
contributions from the land and atmosphere even seem additive, as if the
system were linear.

Figure 10 shows the monthly skill levels obtained when the forecasts are
compared to observations. For precipitation, land initialization appears to
contribute slightly more to monthly skill. For temperature, atmospheric
initialization appears more important, though maximum skill is obtained
when both land and atmosphere are initialized.

Unfortunately, because only one month is considered here and the under-
lying skill levels are small, sampling error prevents a statistical evaluation of
skill for the separate halves of June. Qualitatively, the results look similar to
those in Figure 9, at least in terms of the relative performance of the different
initialization procedures. When all five months of the GLDAS and AMIP
ensembles are considered together (not shown), the land’s contribution to
temperature forecast skill appears to be weighted heavily to the first half of
the month. The land’s contribution to precipitation skill, on the other hand,

appears roughly the same throughout the month.

3.5 A Method for Enhancing Prediction Skill

A potentially important deficiency in the forecast system is illustrated in Fig-
ure 11. Figure 11a shows the correlation between the time series of monthly
precipitation amounts in the outlined box and concurrent time series across

the rest of the continental United States, as determined from observations
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(Higgins, 2000). It thus, in a sense, reflects the spatial structure of monthly
precipitation anomalies in nature. Figure 11b shows the same diagnostic
computed from precipitation rates generated in an AMIP simulation. The
spatial structure of the correlation field is much larger in the observations,
implying that the AGCM underestimates the spatial extent of precipitation
anomalies. The box outlined in the figure is representative; other boxes in
the area produce similar results.

By recognizing this deficiency, we can improve the skill of the forecasts.
First consider Area 2 in the lower panels of Figure 5. This is the area within
North America having the highest idealized predictability. (See the lower
right panel; the idealized r? difference in Area 2 exceeds 0.30.) Given that
the rain gauge density is also high in Area 2, it is thus the area for which we
expect the maximum skill in precipitation forecasts, an expectation that is
indeed borne out in our analysis (lower left panel of Figure 5).

Now consider combining the high expectation for skill in Area 2 with the
fact that in nature, precipitation anomalies in Area 2 are strongly related
to those outside the area (Figure 11a). We can compute a modified rainfall

anomaly, Pl_ 4, for a grid cell G as follows:

P(I}—mod = ZN Pl fr(n)’ (2)

n=1 *n

where N is the number of grid cells in Area 2, P! is the forecasted precipita-
tion anomaly in grid cell n of Area 2, and f,.(n) is the fractional contribution

of that grid cell’s forecast to the modified forecast at the remote grid cell G,
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computed as:
corr(P,, Pg) 3)
E’112[21 ‘COI‘I‘(Pn, PG)| ‘

fi(n) =

The anomalies P, are standardized prior to computing P}_, .4 with (2). In
effect, the modified forecast at the remote grid cell G is now computed solely
from the forecast in Area 2, where the model is expected a priori to have
skill.

Equations (2) and (3) were applied to both the GLDAS forecasts and the
AMIP forecasts, and the 72 skill diagnostic (relative to observations) was then
computed for both sets of modified forecasts. The differences in the 2 values
are shown in Figure 11c. A comparison of this plot to the corresponding plot
for the unmodified forecasts (lower left panel of Figure 5) shows that the
application of (2) and (3) results in a substantial improvement in forecast

skill, skill that can transcend the Area 1 boundaries outlined in Figure 5.

4 Summary and Discussion

The forecasts examined herein allow a first assessment of the impact of land
initialization on 1-month forecast skill. For precipitation, analysis is unfor-
tunately limited to a small area of North America (centered on the Great
Plains), for this is the only area that jointly satisfies two criteria during the
study period: first, that the model shows some predictability in an ideal-
ized analysis (section 3.1), and second, that the precipitation is adequately

measured, as determined by a critical rain gauge density (section 3.2). In
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this region, forecast skill — for both precipitation and air temperature — is
indeed higher for the ensembles using realistic land initialization than for the
ensembles in which the land is not initialized. In places, the improvement
is statistically significant at the 99% confidence level. Furthermore, for tem-
perature prediction, significant forecast skill can be seen outside the Great
Plains region (Figure 7).

Further analysis shows that land initialization, coupled with atmospheric
initialization, improves over atmospheric initialization alone. The data on
submonthly skill levels are noisy, but the idealized analysis suggests that
in the last half of the month, land and atmosphere initialization contribute
roughly the same amount to the potential predictability of precipitation and
temperature. Skill associated with land surface initialization can increase
when observed spatial structures of monthly precipitation anomalies — struc-
tures that are absent in the AGCM — are accounted for (Figure 11).

While the skill improvements shown in this paper are significant, they are
also quite small — perhaps too small to be of practical use. Here we must re-
iterate that the small improvements are, in a sense, minimum improvements.
Current skill is limited in part by inadequacies in the modeling system, par-
ticularly in the model’s ability to respond accurately to surface anomalies.
Improvements in the physics of atmospheric models may very well provide
additional useful skill.

Further limiting our current skill are imperfections in the land initializa-

28



tion and forecast evaluation procedures. The data we apply in the initializa-
tion sequence, for example, have significant uncertainties. Figure 12 shows a
scatterplot comparing monthly precipitation totals from the GPCP dataset
(which was used in the initialization) and the more measurement-intensive
dataset of Higgins (2000) over grid cells within the area of focus (see Figure 5).
The two datasets do agree to first order, but the points are scattered around
the 1:1 line (r?=0.72), despite the application of the raingauge criterion in
defining the area. The scatter belies an uncertainty that may have compro-
mised the initial soil moistures we used. Additional problems undoubtedly
arise from errors in the day-by-day temporal disaggregation of the monthly
precipitation totals, which was determined from reanalysis, and from defi-
ciencies in the LSM’s ability to convert the forcing into anomalies with the
proper magnitude and memory. As datasets and models improve — as we
take advantage, for example, of new satellite measurements of soil moisture
analyzed in a data assimilation framework, new estimates of precipitation
from global satellite networks, and improvements in model formulation — the
skill associated with the initialization should increase.

When evaluating skill in this paper, all years were given equal weight.
Worth investigating is the idea that some years — particularly years with ex-
treme initial conditions — may be easier to predict. In the midwestern United
States drought of 1988, for example, the average observed June precipitation

anomaly (Area 2 in Figure 5) was -0.34 mm/day. The GLDAS ensemble

29



predicted an average anomaly of -0.38 mm/day, whereas the AMIP ensem-
ble generated a positive average anomaly of 0.3 mm/day. More research is
needed to clarify the relative predictability of extreme versus non-extreme
years.

Our goal, of course, is to achieve the potential forecast skill indicated in
Figures 2 and 3. Indeed, with improved observations, the areas over which
we can look for skill should expand considerably — for precipitation, we need
no longer limit our evaluations to the Great Plains of North America. The
areas of interest may even expand beyond those of Figures 2 and 3 as the

models themselves improve.
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Figure Captions

Fig. 1 Scatter plot for the idealized analysis, showing the degree to which the
model can “predict itself” at a central United States grid cell (97.5°W,
40°N). The x-axis represents the forecasted precipitation anomaly aver-
aged over 8 members of the GLDAS ensemble, and the y-axis represents
the precipitation anomaly generated by the ninth member (the “obser-
vations” for this idealized analysis). Seventy-five points are plotted,
one for each of the 5 analyzed months in the years 1979-1993. The

solid line is the 1:1 line.

Fig. 2 Idealized analysis that quantifies the upper limit of predictability in
the model. Top: Averaged r? values for the idealized precipitation
forecasts generated by the GLDAS ensemble. Middle: same, but for
the AMIP ensemble. Bottom: Differences. Values of 0.035, 0.05, and
0.08 in the bottom plot are significant at the 90%, 95%, and 99%
levels, respectively. The black lines outline the regions for which the

differences exceed 0.1, for use in later analyses.
Fig. 3 Same as Figure 2, but for air temperature.

Fig. 4 Density of rain gauges (number of gauges per 2.5° x 2.5° grid cell)
used to generate the GPCP monthly product in the year with the fewest

rain gauges at the grid cell, for the period 1979-1993.
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Fig. 5 Top left: Square of the correlation coefficient (r?) between observed
monthly precipitation anomalies and the anomalies predicted by the
GLDAS ensemble, computed using 75 data pairs covering May through
September. Top right: Same, but for the AMIP ensemble. Bottom left:
Differences. Bottom right: Differences from the idealized analysis. Ar-
eas 1 and 2 are defined by the gauge density criterion and by two levels

of potential predictability (0.10 and 0.30) from the idealized analysis.
Fig. 6 Same as Figure 5, but for air temperature.

Fig. 7 Global version of the lower left panel of Figure 6: differences in the
skill levels (the r? values, relative to observations) between the GLDAS

temperature forecasts and the AMIP temperature forecasts.

Fig. 8 Top left: Monthly r? values averaged over Area 1 from Figure 5,
for both the GLDAS and AMIP simulations. Top right: Same, but
for averages over Area 2 from Figure 5. The bottom plots show the
corresponding plots for air temperature, with Areas 1 and 2 defined in

Figure 6

Fig. 9 Top left: Average of the r? values across Area 1 in Figure 5 for ide-
alized precipitation forecasts (wherein the model “predicts itself”; see
section 3.1) during the first half of June. Results are shown for four fore-

cast ensembles (AMIP, GLDAS, Atm, and GLDAS-Atm), each making

use of a unique combination of three different elements (SST specifi-
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cation, land initialization, and atmospheric initialization) contributing
to forecast skill. Top right: Same, but for air temperature over Area 1

in Figure 6. Bottom: Same, but for the second half of June.

Fig. 10 Left: Average of the r? values for June precipitation forecasts (com-
puted through regressions against observations) across Area 1, as out-
lined in Figure 5. Results are shown for four forecast ensembles (AMIP,
GLDAS, Atm, and GLDAS-Atm), each making use of a unique combi-
nation of three different elements (SST specification, land initialization,
and atmospheric initialization) contributing to forecast skill. Right:

Same, but for air temperature over Area 1 in Figure 6.

Fig. 11 a. Correlation between precipitation time series in the outlined box
and that in each grid cell of the United States, as determined from
an observational dataset (Higgins, 2000). b. Same, but using precipi-
tation from AGCM simulations. c¢. Skill associated with land surface
initialization (i.e., r? for the GLDAS forecasts minus that for the AMIP
forecasts), accounting for the observed spatial structures in panel (a);
this is the same plot as the lower left panel of Figure 5, but using

modified forecasts as determined with (2) and (3).

Fig. 12 Scatterplot comparing monthly rainfall anomalies over May through
September from two data sources: the GPCP Version 2 dataset (Adler

et al, 2003), as processed by Berg (2003), and the Higgins et al. (2000)
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dataset. The former was used in the initialization of the land model.
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Figure 1: Scatter plot for the idealized analysis, showing the degree to which
the model can “predict itself” at a central United States grid cell (97.5°W,
40°N). The x-axis represents the forecasted precipitation anomaly averaged
over 8 members of the GLDAS ensemble, and the y-axis represents the pre-
cipitation anomaly generated by the ninth member (the “observations” for
this idealized analysis). Seventy-five points are plotted, one for each of the 5
analyzed months in the years 1979-1993. The solid line is the 1:1 line.
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in the model. Top: Averaged r? values for the idealized precipitation fore-
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Figure 5: Top left: Square of the correlation coefficient (r?) between observed
monthly precipitation anomalies and the anomalies predicted by the GLDAS
ensemble, computed using 75 data pairs covering May through September.
Top right: Same, but for the AMIP ensemble. Bottom left: Differences. Bot-
tom right: Differences from the idealized analysis. Areas 1 and 2 are defined
by the gauge density criterion and by two levels of potential predictability
(0.10 and 0.30) from the idealized analysis.
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temperature forecasts and the AMIP temperature forecasts.
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Figure 8: Top left: Monthly r? values averaged over Area 1 from Figure 5, for
both the GLDAS and AMIP simulations. Top right: Same, but for averages
over Area 2 from Figure 5. The bottom plots show the corresponding plots
for air temperature, with Areas 1 and 2 defined in Figure 6.
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IDEALIZED SKILL: 1ST HALF OF JUNE
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Figure 9: Top left: Average of the r? values across Area 1 in Figure 5 for
idealized precipitation forecasts (wherein the model “predicts itself”; see sec-
tion 3.1) during the first half of June. Results are shown for four forecast
ensembles (AMIP, GLDAS, Atm, and GLDAS-Atm), each making use of a
unique combination of three different elements (SST specification, land ini-
tialization, and atmospheric initialization) contributing to forecast skill. Top
right: Same, but for air temperature over Area 1 in Figure 6. Bottom: Same,
but for the second half of June.
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ACTUAL SKILL: FULL JUNE
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Figure 10: Left: Average of the r? values for June precipitation forecasts
(computed through regressions against observations) across Area 1, as out-
lined in Figure 5. Results are shown for four forecast ensembles (AMIP,
GLDAS, Atm, and GLDAS-Atm), each making use of a unique combination
of three different elements (SST specification, land initialization, and atmo-
spheric initialization) contributing to forecast skill. Right: Same, but for air
temperature over Area 1 in Figure 6.
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c. MODFIED SKILL, GLDAS-AMIP  MJJAS Composite

< .
50N .
4 .
40N — E I :
30N J g -
0 -120 -1

-13 10 -100 -90 -80 -70

OO0 OORFENWO
ORUIOOOUIOOO

JWNRERPOOOO
OOO0OUICOUTA

Figure 11: a. Correlation between precipitation time series in the outlined
box and that in each grid cell of the United States, as determined from an
observational dataset (Higgins, 2000). b. Same, but using precipitation from
AGCM simulations. c. Skill associated with land surface initialization (i.e.,
r? for the GLDAS forecasts minus thgg for the AMIP forecasts), accounting
for the observed spatial structures in panel (a); this is the same plot as the

lower left panel of Figure 5, but using modified forecasts as determined with
(2) and (3).
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Figure 12: Scatterplot comparing monthly rainfall anomalies over May
through September in Area 1 from two data sources: the GPCP Version
2 dataset (Adler et al, 2003), as processed by Berg (2003), and the Higgins
et al. (2000) dataset. The former was used in the initialization of the land
model.
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